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Abstract

In this paper, we study model predictive control (MPC) of the cooling process during wine fermentation. A strategy to
solve nonlinear control problems with changing model parameters, unknown disturbance factors and changes in the states
is presented. The parameters and states determining the fermentation dynamics are regularly estimated from measurements
and the optimal cooling profile is computed and if necessary adjusted. The process of wine fermentation is described by
a slightly modified version of the novel model including a death phase for yeast and the influence of oxygen on the process
published in Schenk et al. (2014). The numerical results regarding the control inputs and the development of the substrates
and the product for an industrial controller and for this MPC controller are compared. It arises that the usage of this MPC
cooling strategy results in considerable savings for the energy consumption in the process of wine fermentation.

Keywords:
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1. Introduction1

For industrial companies the main objective consists in mak-2

ing profit. One way to increase the profit of a company is to3

increase the profit of any product by reducing its production4

costs but maintaining its quality at the same time. There-5

fore, the application of mathematical modeling, simulation6

and optimization techniques establishes more and more in7

∗Corresponding author
1RŒNOBIO: Robust energy-optimization of fermentation processes

for the production of biogas and wine
2MPC: Model Predictive Control
3ENMPC: Economic Nonlinear Model Predictive Control
4PSE: Parameter and State Estimation
5SQP: Sequential Quadratic Programming
6NMPC: Nonlinear Model Predictive Control
7EMPC: Economic Model Predictive Control
8PSEP: Parameter and State Estimation Problem
9OCP: Optimal Control Problem

10BDF: Backward Differentiation Formula
11ACADO: Automatic Control and Dynamic Optimization
12DLR: Dienstleistungzentrum Ländlicher Raum

industry. In the context of fermentation processes, this is the8

main objective of the project RŒNOBIO1.9

As stated in the previous paper Schenk and Schulz (2015),10

there is a high potential for saving energy in the process of11

making wine. In 2009, the energy consumption generated12

0.08% of the global greenhouse gas emissions or in other13

words about 2 kg/0.75l bottle (Smyth et al. (2011)). For14

instance in California the annual energy requirements of the15

wine industry are located at 400 GWh. This makes it the16

second highest energy consumer in the food industry (Gal-17

itzky et al. (2005)). Thereby, the control of the fermentation18

temperature plays a crucial role (Freund (2009); Bystricky19

(2009); Freund (2008)). Therefore, the minimization of the20

energy needed for cooling during wine fermentation matters.21

In Schenk et al. (2014), a novel process model representing22

the dynamic process of wine fermentation including the23

yeast dying phase has already been introduced. This model24

shows the behavior of yeast cells observed in experiments.25

An illustration of and more information on the yeast growth26

phases can be found in Dittrich and Gromann (2011). More-27
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over, this model also includes oxygen which is an important28

factor for yeast activity. A slightly modified version of this29

model reflects the process of wine fermentation as observed30

in experiments reduced to the most important substrates31

involved.32

In addition to this, as for the energy-optimal control problem33

in Schenk and Schulz (2015), for solving a MPC2 problem34

with an objective functional minimizing the energy con-35

sumption and maintaining the quality of the wine, the tem-36

perature development has to be added to the model. Sugar37

being transformed into alcohol is an exothermic reaction.38

This means that the produced heat has to be dissipated as the39

temperature development is very important for the yeast. If40

the fermentation temperature is too high, yeast cells will die.41

However, in the phase where oxygen is available, even more42

heat is generated. Moreover, the change of temperature due43

to the tank’s environment and the cooling element which is44

switched on or off based on the control input are taken into45

account.46

In this paper, an Economic Nonlinear Model Predictive Con-47

trol (ENMPC3) problem, minimizing the cooling energy,48

needed during the fermentation process by controlling the49

fermentation temperature and maintaining the wine quality50

(especially of white wine), with the performance of param-51

eter and state estimation (PSE4) is solved. This means that52

whenever new measurements are available the model param-53

eters and states are estimated again and the new control input54

is computed. The MPC2 and PSE4 problems are solved by55

making use of a multiple shooting method (Plitt (1981);56

Bock and Plitt (1984); Bock (1987)) for the parametrization57

of the problems and a sequential quadratic programming58

(SQP5) method (as in Nocedal and Wright (2006)) for the59

solution of the resulting constrained nonlinear optimization60

problems.61

Further information on Nonlinear Model Predictive Con-62

trol (NMPC6) or an introductory overview to the different63

NMPC6 schemes can be found for instance in Allgöwer et al.64

(1999) and Huba et al. (2011). For NMPC6 problems, the ob-65

jective functions are usually of tracking type. In comparison66

to NMPC6, Economic Model Predictive Control (EMPC7)67

is another type of MPC2 with the objective of maximizing68

the system’s profitability, i.e. in our case minimizing the69

energy consumption. A standard EMPC7 formulation can70

be found for instance in Ellis and Christofides (2015). In71

this paper, the objective is a combination of both structures,72

so we study an ENMPC3 problem.73

In Section 2, the control system including the model repre-74

senting the wine fermentation process and its other compo-75

nents like parameter and state estimation and EMPC7 are76

introduced. Then, the methods for solving this control sys-77

tem are presented. In Section 3, the introduced methods are78

applied to the considered control system. It follows a com-79

parison and discussion of the results regarding an industrial80

control input and our optimal control input. Conclusions81

are presented in Section 4.82

2. Material and methods83

2.1. The nonlinear control system84

2.1.1. General structure85

The entire open-loop nonlinear control system is illustrated86

in Figure 1. Its components will be described in detail in87

the following or more precisely in Section 2.1.3 and Section88

2.1.4.89

Controller Batch process

Sensor

Estimator

Disturbances

Control

input

System

output

Measured output

Figure 1: The control scheme

Furthermore, in this paper whenever we talk about the90

system model, we mean a system of nonlinear ordinary91

differential equations of the form92

ẋ(t)= f (t,x(t),u(t),d,p)

with the differential states represented by x, the control93

inputs represented by u(t), the unknown disturbances94

expressed by d and the parameters represented by p. In95

addition to this, box constraints for all the variables will be96

allowed.97

2.1.2. Process Model Description98

First, we introduce a slightly modified version of the model99

introduced in Schenk et al. (2014) by (1). It represents the100

process of wine fermentation as it can be observed in real101

experiments.102

Thereby, yeast growth is dependent on the consumption103

of the nitrogen, sugar and oxygen concentration. Sugar is104

converted into ethanol but also inhibited by ethanol.105

The sugar concentration can be divided into two parts,106

the amount of sugar for the conversion into ethanol and107

the amount of sugar which is consumed by the yeast as a108

nutrient. Furthermore, a process under aerobic conditions109

2
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is described by this model as oxygen is an important factor110

for yeast activity.111 

dX
dt

=µmax(T)
N

KN +N
S

KS 1 +S

(
O2

KO+O2
+ε

)
X

−kdX−Φ(E)X
dN
dt

=−k1µmax(T)
N

KN +N
S

KS 1 +S

(
O2

KO+O2
+ε

)
X

dE
dt

=βmax(T)
S

KS 2 +S
KE(T)

KE(T)+E
X

dS
dt

=−k2
dE
dt

−k3µmax(T)
N

KN +N
S

KS 1 +S

(
O2

KO+O2
+ε

)
X

dO2

dt
=−k4µmax(T)

N
KN +N

S
KS 1 +S

O2

KO+O2
X

(1)
X stands for the yeast concentration, N for the nitrogen112

concentration, E for the ethanol concentration, S for the113

sugar concentration, O2 for the oxygen concentration and114

T for the time-dependent temperature.115

The death of yeast cells, due to the accumulation of a high116

alcohol concentration, which is included in the differential117

equation for yeast, is described by the following nonlinear118

term119

Φ(E)=

(
0.5+

1
π

arctan(kd1(E−tol))
)
kd2(E−tol)2, (2)

where tol stands for the tolerated ethanol concentration,120

e.g. tol = 79 g/l which was determined by a set of data121

produced at Geisenheim University. Moreover, kd1 and kd2122

are parameters corresponding to the death of yeast cells due123

to the exceedance of the ethanol tolerance tol. This death124

term ensures that the stationary and death phase of yeast125

cells occur. The evolution of yeast cells in these phases126

is dependent on the concentration of ethanol. Ethanol127

inhibits the yeast such that if its concentration is below a128

tolerance tol the amount of yeast cells stays stationary, and129

if it exceeds tol, the yeast cells start dying.130

The death of yeast cells due to other circumstances is131

ensured by the second term in the differential equation for132

the yeast. Thereby, kd is the parameter corresponding to133

the part of yeast dying due to other circumstances. This134

model formulation uses Michaëlis-Menten kinetics. Here,135

the specific growth rates µmax(T) and βmax(T) are linearly136

dependent on temperature T . Moreover, KN and KO are137

the Michaëlis-Menten half-saturation constants associated138

to nitrogen or respectively oxygen. Furthermore, KE(T)139

represents the temperature dependent ethanol inhibition.140

The parameters k1 and k4 are the yield coefficients141

associated to nitrogen and respectively oxygen.142

In this model, two saturation constants associated to sugar,143

namely KS 1 and KS 2 , due to the two parts explained144

above, are needed. Thereby, KS 1 is the saturation constant145

associated to the part of sugar used for yeast activity and146

KS 2 is the saturation constant associated to the part of147

sugar needed for the accumulation of alcohol. Furthermore,148

also two yield coefficients k2 and k3 associated to the two149

different parts of sugar are needed.150

The main difference to the process model introduced151

in Schenk et al. (2014) is the constant ε in the oxygen152

consumption term. This constant was introduced due to the153

fact that even if there is no oxygen available any more other154

nutrients are consumed by the yeast for its activity. Due155

to its introduction, we also have to add another death term,156

the second term in the yeast equation, to keep the balance157

in the yeast population.158

In case of computing the future control input by solving159

an optimal control problem several times, the system of160

differential equations representing the process includes161

an additional differential equation for the temperature162

development. This differential equation looks like this163

dT
dt

=α1
dE
dt
−α2

dO2

dt
−α3(T−uc)ω1(t)−α4(T−Text). (3)

This differential equation for temperature is based on a164

few assumptions like that with the accumulation of ethanol,165

the temperature inside the fermentation tank increases and166

at the beginning where oxygen is still present, even with167

a higher impact. In equation (3) α1 expresses how much168

heat is generated by the conversion of sugar into alcohol.169

Furthermore, α2 represents the measure of how the disap-170

pearance of oxygen reduces this accumulation of heat. α3171

can be interpreted as a heat transfer coefficient which is the172

smaller the greater the wine tank in relation to the cooling173

element is. Furthermore, α4 can be interpreted as another174

heat transfer coefficient describing the heat transfer from the175

exterior of the tank to the interior of the tank. Thereby, T is176

the current temperature in the fermentation tank and uc the177

constant temperature of the cooling fluid flowing through178

the cooling element. The control input ω1 determines179

whether and when cooling shall take place or not.180

2.1.3. Parameter and state estimation181

As MPC2 couples an estimation of the current state and182

parameters with a receding horizon control of the future,183

usually for short future time intervals, as a basis, we have to184

set up and solve a parameter and state estimation problem185

(PSEP8). Thereby, parameters and states are estimated by186

making use of the past available measurements. The esti-187

mated parameters and states for the current point of time are188

3
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then used for the model initialization of the EMPC7 problem.189

The PSEP8 that has to be solved looks like the following.190

min
x,p

Nc∑
i=0

‖ηi−g(ti,x(ti),d(ti),p)‖2S i
,

s.t. ẋ(t)= f (t,x,d,p), t∈[t0,tc]

c(x(t0),...,x(tc),p)=0 or ≥0

(4)

with a least-squares objective functional weighted with the191

positive semi-definite weighting matrices S 0...S c which are192

typically the inverses of the variance-covariance matrices193

related to the measurement errors in our case represented194

by the mean value of the measurements. The measured data195

is represented by ηi where these are measurements for the196

sugar and ethanol concentration at time sample points t0...tc.197

Moreover, g(ti,x(ti),d(ti),p) represents the corresponding198

model output.199

The system of differential equations ẋ(t)= f (t,x,d,p) refers200

to system (1) with the differential states x=(X,N,E,S ,O2)T
201

and parameters p. Furthermore, additional equality and box202

constraints for the differential states and parameters in this203

formulation are represented by the function c.204

A parameter and state estimation problem is a subclass of205

an optimal control problem (OCP9) and there are several206

different ways of solving OCPs as demonstrated in Binder207

et al. (2001).208

For this case, the discretization of the PSEP8 (4) was209

performed making use of a direct multiple shooting210

approach (Plitt (1981); Bock and Plitt (1984); Bock (1987)),211

a backward differentiation formula method (BDF10, as in212

Hairer (2010)) for the numerical integration of the system213

of ordinary differential equations and a SQP5 method (as in214

Nocedal and Wright (2006)) for the solution of the resulting215

constrained nonlinear optimization problem. In detail the216

solution of this optimization problem is performed as in217

Schenk and Schulz (2015). All of these methods were218

implemented using the ACADO11 toolkit - a toolkit for219

Automatic Control and Dynamic Optimization developed220

by Moritz Diehl et al Houska et al. (2009–2013).221

2.1.4. Economic nonlinear model predictive control222

After the basis for the model initialization, the parameter223

and state estimation using a full information approach, was224

established in the last section, now, we can take care of the225

formulation of the ENMPC3 problem. The MPC2 procedure226

is illustrated in Figure 2. At the current state the state and pa-227

rameters are initialized by making use of the parameter and228

state estimation based on the past measurements. Now, the229

future open-loop control input is computed and the future230

state is predicted by solving the formulated MPC2 problem.231

control
horizon

prediction
horizon

past control
future open-loop control

future state
past state

Figure 2: The discrete MPC scheme

Based on the current states x̂(tc), disturbances d̂ and232

parameter estimates p̂ the role of MPC2 consists in the233

prediction of the system’s future dynamic behavior and the234

determination of the future control inputs. This leads to the235

optimization of an open-loop objective functional over a236

fixed time horizon T . However, the system’s real behavior237

deviates from the predicted behavior. This is caused by238

unknown disturbances and/or due to differences between239

the model and the dynamics of the real process. Whenever240

new measurements become available, the new estimates241

coming from the full information estimation are used, the242

horizon is shifted and the system’s dynamic behavior is243

predicted from this point of time again. The considered244

MPC2 optimization problem looks like the following245

min
u(·)∈S (∆)

∫ tc+T

tc
F(t,x(t),u(t))dt

s.t. ẋ(t)= f (t,x(t),u(t),d̂,p̂),∀t∈[tc,tc+T ]
x(tc)= x̂(tc),

c(t,x(t),u(t),d̂,p̂)≥0,∀t∈[tc,tc+T ]

(5)

where tc represents the current point of time and the ex-246

act formulation of F(t,x(t),u(t)) depends on the case we247

consider. For an ENMPC3 formulation it consists of the248

economic stage cost and a tracking term. It is dependent249

on the target state and the control input determined by the250

previous calculation. Moreover, the new calculated con-251

trol input u is an element of S (∆), the family of piecewise252

constant functions with period ∆ > 0 where ∆ := [tc,tc+1].253

The finite-time prediction horizon is denoted by [tc,tc+T ]254

where T represents the future time horizon. Furthermore,255

x̂, d̂ and p̂ are the current state disturbance and parameter256

estimates coming from the parameter and state estimation257

by making use of past measurements for the current point of258

time tc. The constraints in the above formulation are system259

constraints for the input, state and other constraints.260

Additional to the formulation (5), one should define a ter-261

minal constraint and/or terminal cost in order to ensure262

theoretical stability. More information on theoretical stabil-263

ity of MPC2 can be found in Magni and Scattolini (2004).264
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At tc ENMPC3 receives a state measurement which is used265

for model initialization. The OCP9 is solved for an optimal266

piecewise input trajectory by using a direct multiple shoot-267

ing approach in combination with a BDF10 method and a268

SQP5 method. This solution procedure is similar to the one269

for the PSEP8 in Section 2.1.3 and its implementation was270

realized using the ACADO11 toolkit as well.271

The control input for the first sampling period is sent to the272

control actuators. At the next sampling time the OCP9 is re-273

solved after receiving a new state measurement by shifting274

the prediction horizon to the future by one sampling period.275

As mentioned above, the solution procedure for the consid-276

ered EMPC7 optimization problem (5) is similar to the277

one for the PESP. The system of differential equations278

ẋ(t) = f (t,x,u,d̂, p̂) corresponds to the system in (1) with279

an additional differential equation for the temperature evo-280

lution introduced in Equation 3 with the differential states281

x= (X,N,E,S ,O2,T)T and control ω1. Note that x here dif-282

fers from x in Section 2.1.3 by the temperature variable T .283

3. Results and discussion284

3.1. Experimental setup285

(a) Experimental
setup of the two
tanks

(b) Cooling brine sup-
ply

(c) Cooling aggregate

Figure 3: Pictures taken at DLR Mosel

The results presented in this section are based on an exper-286

iment that was conducted with the facilities of one of our287

public research partners, DLR12 (Dienstleistungszentrum288

Ländlicher Raum) Mosel in Bernkastel-Kues. Two tanks289

containing 1000 l Riesling must each, which was clarified290

by sedimentation, were set up for fermentation.291

One of them was controlled by an industrial controller292

(Figure 3a tank on upper left) based on CO2 measurements,293

called industrial cooling strategy in the following. All the294

equipment and controlling software were provided by the295

industry partner fp-sensor systems. The other tank was296

controlled by our MPC2 controller (Figure 3a tank on upper297

right) introduced in the previous section.298

Furthermore, the oenologist informed us about the299

target-setting. They wanted to produce an off-dry state300

wine Riesling containing approximately 18 g/l residual301

sugar and 12% alcohol. In addition to this at the beginning302

of fermentation 0.2 g/l ZYMAFLORE X16 wine yeast303

(Saccharomyces cerevisiae) was added and other nutrients304

would be added as per specification and demand in the305

further process of fermentation. Depending on which kind306

of yeast is used, one also should preferably stick to certain307

guidelines for the fermentation temperature and the further308

addition of nutrients. The utilized yeast is known to form309

strong flavors of peach, white flowers and yellow fruits.310

They expected the fermentation to last around 20 days with311

a fermentation rate, or in other words, a must weight loss312

rate of approximately 10 g/l/d.313

The temperature of the cooling brine (Figure 3b), generated314

by a cooling aggregate (Figure 3c), is hold at 2◦C and the315

temperature of the wine cellar averages 14.5◦C.316

3.2. Initial parameter and state identification317

As a basis for the computation of the future control, we took318

parameter values obtained from a parameter and state identi-319

fication conducted for a similar yeast type, i.e. WhiteArome.320

Parameters set
KN 0.1156
k1 0.0536
KS 2 4.3262
KE1 0.2616
KE2 38.90
kd1 99.86
kd2 0.0021
KO 0.0007
k4 0.0025
ε 0.02
kd 0.01
tol 79.0

Table 1: Fixed parameter values

However, some321

parameters were set322

to literature values323

Juschkat (2013),324

for kd1 , kd2 , KO325

and k4 the values326

were chosen as in327

Schenk and Schulz328

(2015) and for the329

new introduced330

parameters ε and kd331

reasonable values332

were selected (see333

Table 1). The334

rest of the model335

parameters was336

estimated as explained above (see Table 2).337

Parameters initial estimated
µ1 0.08 0.0514
µ2 0.1858 4.9325
KS 1 33.35 34.2695
β1 0.3371 0.3954
β2 0.0285 0.0
k2 1.2 1.5324
k3 15 15.75

Table 2: Initial parameter estimates

5
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The fit to sugar measurement data for the similar yeast type338

and the development is illustrated in Figure 4. Thereby, the339

simulation output which provides the best fit to the sugar340

measurements, is illustrated in blue and the linear function341

expressing the must weight loss rate is represented in pink.342

The state trajectories show the behavior also observed in343

real experiments.344
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Figure 4: Basic parameter estimation results for similar yeast type

3.3. Economic nonlinear model predictive control345

As already mentioned, in industry the main goal consists in346

maximizing the gain of a product which can be achieved by347

reducing its production costs without sacrificing its quality.348

Thus, our objective in the optimization problem, formulated349

in the following, consists in the minimization of the energy,350

needed for cooling by controlling the fermentation temper-351

ature, in combination with the maintenance of the quality352

and constraints on the maximum temperature, the control353

input ω1 and the residual sugar, expressed by a boundary354

condition. The considered optimization problem looks like355

the following356 
min

x,u
γ1

∫ tc+T

tc
ω1(t)ucdt +γ2

∫ tc+T

tc
(S (t)−Ŝ (t))2dt

s.t. ẋ(t)= f (t,x,d,p) (Process model (1))
dT
dt

=α1
dE
dt
−α2

dO2

dt
−α3(T−uc)ω1(t)−α4(T−Text)

(6)

with adequate initial values, box constraints and a boundary357

condition regarding the final sugar concentration, i.e.358

S end =18. (7)

This boundary condition guarantees that the product is going359

to be an off-dry wine with 18g/l residual sugar. The formu-360

lation (6) is an extension of the one in Schenk and Schulz361

(2015). Thereby, we reformulated the problem introduced in362

Schenk and Schulz (2015) by using an outer convexification363

formulation (as first presented in Sager (2005) or later in364

Kirches (2010)). This reformulation was necessary due to365

the fact of working with a discrete switching structure for366

the cooling element which is either turned on or off.367

Thereby, T represents the shrinking time horizon with a368

fixed end point. Within the objective function formula-369

tion the first term represents the energy consumption due370

to cooling by temperature control and the second term371

serves the maintenance of the quality assured by consid-372

eration of the fermentation rate (must weight loss rate), i.e.373

Ŝ (t) =
S f−S 0

t f−t0
t + S 0. This ensures that the sugar is con-374

sumed as linearly as possible. For the temperature T and375

the control input ω1, box constraints of the following form376

13◦C≤T ≤20◦C, 0≤ω1≤1

are implemented.377

378

Parameters set
Text 14.5
uc 2

α1
21.44

95
α2 1.0
α3 0.1584
α4 0.0434

Table 3: Additional parameter values for
the corresponding model

The process model379

and the additional380

differential equation381

for the temperature382

development were383

already explained in384

detail in Section 2.1.2.385

The additional param-386

eters are illustrated in387

Table 3. They were388

set to certain values389

depending on the framework of the experiment like for390

example the heat coefficient α1 which is dependent on391

the accumulation of alcohol. It was calculated based on392

how much heat is produced by the fermentation of a must393

which contains 205.3 g/l of sugar. According to Dittrich394

and Gromann (2011), the fermentation of one mol hexose395

(≈180 g) computes approximately 23.5 kcal/l of heat. This396

means that if the fermentation process starts with a must of397

14◦C it can heat up to 35.44◦C as around 20% is dissipated398

with the disappearance of the fermentation gas. This leads399

to 21.44◦C relative to the desired alcohol concentration400

at the end of the fermentation process for α1. α3, the401

convection heat transfer with respect to the cooling jacket,402
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Figure 5: Future open-loop control trajectories for whole horizon with an initial
nutrient concentration of 0.18g/l

was assumed to have an impact factor of 0.15841 and α4,403

the convection heat transfer with respect to the exterior of404

the tank, was set to 0.0434. The rest of the parameters was405

set to certain values based on experience.406

For the differential states, the initial values illustrated in407

Table 4 were chosen.408

X(0) 0.2 g/l
N(0) 0.18 or respectively 0.105 g/l
E(0) 0 g/l
S (0) 205.3 g/l
O2(0) 0.005 g/l
T(0) 14.0◦ C

Table 4: Initial values for differential states for optimal control problem

Thereby, some of them were measured, like sugar, alcohol409

and nitrogen and others, like nitrogen for the first compu-410

tation of the control input, and oxygen were set to these411

values based on experience.412

For the first computation of the control input we receive the413

results illustrated in Figure 5. The predicted trajectories of414

the product and the substrates represent the behavior also415

observed in real experiments. The corresponding future tem-416

perature profile proceeds in the way that the temperature is417

supposed to be down-regulated just after the start of fermen-418

tation and then after day four the fermentation temperature419

should be increased linearly up to 20◦C at which the fermen-420

tation is supposed to be phased out until the aspired residual421

sugar concentration is reached. The corresponding control422

input to this temperature behavior shows a similar behavior.423

After the fermentation process was already running a while,424

the measured sugar and alcohol concentrations were taken to425

run a full information estimation of the state and parameters426

and compute a new future control input. The corresponding427

results are described by Figure 6. Thereby, the pink line428

illustrates the linear function representing the must weight429

loss rate.430
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Figure 6: Status during running fermentation process and future prediction

At the top the fit of the simulation to the sugar and alcohol431

measurements (blue) with the trajectory for the future con-432

trol input from the current point of time (black) is illustrated433

and compared to the first predicted state trajectory (purple).434

They are different from each other for the whole time hori-435

zon, the past and future time domain. At the bottom the436

trajectories resulting from the estimation with the currently437

predicted trajectories and the first predicted trajectories are438
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compared. They differ from each other for the whole time439

horizon as well. An important point is the addition of nitro-440

gen after day five, handled as a disturbance in the system441

model, which can be spotted in this graphic.442
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Figure 7: Future open-loop control after day 12

The future open-loop control of the fermentation tempera-443

ture after day 12 is illustrated in Figure 7. Interpreting the444

results in detail, in particular the model calibration, showed445

that the weight for the sugar term has to be adjusted. So446

for the computation of the control input for the rest of the447

fermentation process, a new distribution of the weights in448

the objective functional and a new fermentation rate for the449

rest of the fermentation were established. The future control450

input for the new formulation proposed that from now on451

cooling down is the best option.452

As the produced wine is supposed to be used and it does453

not just serve experimental purposes, the knowledge and454

experience of the wine expert is also of high importance.455

The wine expert decided to cool down even more to be safe.456

The fermentation process was stopped when the aspired457

sugar concentration was reached by setting a permanent458

temperature of 8◦ C (permanent cooling).459

After the execution of the experiment, the model was cal-460

ibrated again. Figure 8a shows a comparison of the state461

trajectories for the first computed control input (purple) and462

for the model calibration (blue). The cooling strategy in463

case of using MPC2 (blue) was compared to an industrial464

cooling strategy (black) which is visualized in Figure 8b.465

As earlier in this section, the linear function representing the466

must weight loss rate is visualized in pink.467

The energy consumption in case of using the optimal con-468

trol input equals 17.65 compared to 36.70 in case of using469

the industrial control input. This means that by using the470

computed MPC2 input the cooling costs can be reduced (in471

this experiment by approximately 52%).472
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Figure 8: Whole trajectories for states and control

All in all, it can be said that the best choice would have been473

the direct connection of sensors and actuators with MPC2
474

controlling software but at this time it was not possible. The475

major problem is due to the fact that an experiment in this476

scope is possible only once a year and that we need at least477

this amount of must for the industrial controlling software478

to work reliably.479

Summing up, we can say that two different cooling strate-480

gies were carried out, one where the fermentation is run481

early at high temperatures and another one where the fer-482

mentation is carried out early at low temperatures. As a483

result, we received two different wine flavor styles, i.e. yel-484

low fruit aroma (classic Riesling taste) for the MPC2 strategy485

and gummy bear/ice candy aroma for the industrial strategy486

but most notably no off-flavors were formed. Both flavor487

styles were built from the same yeast but different fermen-488

tation temperatures. The MPC2 strategy which reached489

high temperatures early had an advantage for the end of the490

fermentation regarding the energy consumption. Usually,491
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the cooling is turned off too late and the exchange with the492

exterior of the tank is not sufficiently used which can also493

be observed in this experiment comparing the two different494

strategies. The MPC2 strategy exploits the cooling by the495

exterior of the tank to save energy by turning off the cooling496

carried out by the cooling jacket.497

4. Conclusions498

In this research article, economic model predictive control499

with state and parameter estimation for the process of wine500

fermentation was studied. After a short introduction into the501

general structure of the optimization procedure, the under-502

lying reaction model and additional differential equations,503

the methodology namely performing economic nonlinear504

model predictive control with parameter and state estima-505

tion as a basis for the current state was explained in detail.506

The elaborated methods were applied to a real experiment507

conducted at the DLR12 Mosel in Bernkastel. Thereby, two508

different controllers were used for the control of the fermen-509

tation temperature. The results regarding the two different510

control inputs, one imposed by an industrial controller, an-511

other one by making use of the control input computed by512

solving the ENMPC3 problem, were used. Thereby, an513

optimal control problem for the minimization of the energy514

needed for cooling during fermentation in combination with515

the maintenance of the quality of the wine was set up. All in516

all, by using the calculated control input from an ENMPC3-517

like strategy the energy consumption can be reduced (in this518

experiment by approximately 52%). No off-flavors were519

formed and both wines are tasty.520
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Schenk, C., Schulz, V., 2015. Energy-optimal control of tem-583

perature for wine fermentation based on a novel model includ-584

ing the yeast dying phase. IFAC-PapersOnLine, 5th IFAC585

Conference on Nonlinear Model Predictive Control (NMPC15),586

Seville, Spain 48, 452–457. URL: http://www.sciencedirect.587

com/science/article/pii/S240589631502604X, doi:10.1016/588

j.ifacol.2015.11.320.589

Schenk, C., et al., 2014. Novel model for wine fermentation including the590

yeast dying phase. ArXiv-Preprint http://arxiv.org/abs/1412.591

6068.592

Smyth, M., et al., 2011. Solar energy in the winemaking industry. Green593

Energy and Technology Springer.594

9


