
  

   

KIPET – AN OPEN-SOURCE KINETIC PARAMETER 

ESTIMATION TOOLKIT 

Michael Shorta, Christina Schenka, David Thierrya, Jose Santiago Rodriguezb,  

 Lorenz T. Bieglera* and Salvador Garcia-Muñozc 

a Carnegie Mellon University 

Pittsburgh, PA 15213 
b Purdue University 

West Lafayette, IN 47907 
c Eli Lilly and Company 

Indianapolis, IN 46285 

Abstract 

This paper presents a new software package, KIPET, which is designed to estimate kinetic parameters 

from dynamic chemical reaction systems. The software toolkit is based on a unified framework that makes 

use of maximum likelihood principles, collocation-based discretization methods, and large-scale nonlinear 

optimization. KIPET contains a wide array of tools for kinetic parameter estimation and model evaluation 

in an easy-to-use open-source Python-based framework. The package can currently be used for data pre-

processing, simulation of reactive systems described with differential algebraic equations, estimability 

analysis, estimation of system variances and measurement errors separately, estimation of kinetic 

parameters from spectroscopic data or concentration data, and the estimation of parameter confidence 

intervals using the NLP sensitivities obtained from sIPOPT. Since large-scale NLP problems require 

robust initialization strategies, a variety of tools for initialization are also included. KIPET utilizes Pyomo, 

a Python-based open-source optimization modeling language, in the background to formulate and solve 

all optimization problems and leverages other open-source Python packages to provide visualization of 

results. KIPET is well-documented and available for free download from the code-hosting site Github. 
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Introduction

Great improvements have been made to the speed, 

reliability, accuracy, and cost associated with instrumental 

analytical measurement techniques and the use of these to 

gain insights into lab-scale processes is vital in the chemical 

and pharmaceutical industries to design scalable, 

controllable, and optimized process designs. Spectroscopy 

is commonly used for the monitoring of chemical reactions 

and produces large amounts of data which can be used to 

infer the concentrations of species in the reactor, based on 

the absorption of individual species in the ultraviolet 
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visible, Raman, near-infrared, and infrared wavelength 

regions. 

Many techniques are available to utilize this valuable 

information obtained from experimental data in order to 

obtain estimates for the kinetic parameters based on a 

candidate reaction mechanism model. A commonly applied 

approach is that of multivariate curve resolution-alternating 

least squares (MCR-ALS) (de Juan and Tauler, 2000), 

which combines the soft-modeling MCR approach (Lawton 

and Sylvestre, 1971) with a hard-modeling approach. MCR 



  

 

estimates pure component absorption spectra and their 

concentration profiles from the spectroscopic data based on 

Beer’s light absorption law when no information is known 

regarding the reaction mechanism. The problem suffers 

from rotational ambiguities and thus cannot be decomposed 

to unique solutions. MCR-ALS attempts to impose hard 

constraints on this problem by introducing a chemical 

reaction model and non-negativity constraints. This 

significantly reduces rotational ambiguity and has been 

applied to a wide variety of problems (Jaumot et al., 2015; 

de Juan et al., 2014), however the approach lacks the 

guidance of explicit search directions when minimizing the 

fitting error and thus converges very slowly.  

Another common technique, referred to as a hard-

modeling approach, is the Gauss-Newton-Levenberg-

Marquardt (GNLM) method (Marquardt, 1963) where the 

kinetic parameters are initialized and a system of ordinary 

differential equations (ODEs) is integrated to provide initial 

concentration profiles for the reaction species. Least 

squares regression is then used to obtain the pure 

component spectra. Following this the parameters are 

updated based on the error and the procedure repeats until 

convergence. Many variants of this approach have been 

proposed, particularly looking to reduce the large numbers 

of data points handled by the curve resolution algorithm 

through factor analysis (Bijlsma et al, 2001; Maeder and 

Zuberbuhler, 1990; Sawall et al., 2012). A comprehensive 

review of these techniques and other MCR techniques can 

be found in (de Juan et al, 2014). 

These methods all converge slowly and perform poorly 

when unstable and ill-conditioned dynamic systems are 

solved. Additionally both methodology classes rely heavily 

on initial values and provide no guarantee on convergence 

(Chen et al., 2018). These techniques also fail when the 

concentration matrix columns are dependent, as they 

require (CTC) to be nonsingular. Furthermore, system noise 

in the reaction model is also not considered in these 

methods. 

These methods are commonly utilized in industry to 

obtain kinetic parameter estimates and are implemented in 

an array of different modeling tools and proprietary and 

commercial software packages. Statistical languages such 

as R and S are commonly employed for a variety of 

parameter estimation problems, however few packages deal 

with spectra directly. The commercial process modeling 

platform gPROMS is also widely used for experimental 

design and parameter estimation, however these tools do not 

provide simultaneous parameter estimation combined with 

spectra, rather allowing the user to test the candidate models 

with responses sequentially and then allowing the user to 

validate and judge the quality based on statistical tools.  

Toolkits like ACADO, CasADi, PARFIT provide 

many useful features regarding the solution of parameter 

estimation, sensitivity analysis, etc., but do not provide 

capabilities of solving simultaneous parameter estimation 

combined with spectra. 

General regression (GREG and GREGPLUS) (Stewart 

et al., 1992), included in the commercial package Athena 

Visual Studio (Stewart and Caracotsios, 2008) tests models 

against data on a limited number of response types and 

helps users to plan further experiments using linear 

regression and statistical techniques. 

MCR-ALS GUI2.0 from Tauler et al. (2015) is 

implemented in MATLAB and freely available, and a 

number of other open-source tools based on these soft- and 

hard-modeling approaches described above are available 

such as HyperSpy (de la Pena et al., 2018). 

A new approach was proposed by Chen et al. (2016) 

which is a more comprehensive and holistic unified 

framework for reaction kinetic parameter estimation based 

on maximum likelihood principles and collocation 

methods. This approach forms the backbone of the KIPET 

(Kinetic Parameter Estimation Toolkit) software package, 

which will be introduced in the next section. The approach 

uses an extended maximum likelihood approach and 

collocation methods to first deconvolve system variable 

noise from the measurement errors and then solve the 

parameter estimation problem simultaneously. This method 

provides reliable, robust solutions quickly. In addition to the 

application of these new methods to an open-source, 

Python-based framework, KIPET also aims to provide users 

with a set of additional tools to aid in measuring the 

estimability of parameters, simulating, and testing their 

models, without tedious programming in a user-oriented 

workflow design with detailed examples and 

documentation.  

The rest of this paper will focus on the mathematical 

details of the unified framework of Chen et al. (2016) 

followed by a description of the software implementation in 

KIPET. A tutorial example is then presented before the 

conclusion and future work. 

Mathematical Background and Framework 

This section briefly describes the mathematical details 

of the unified framework upon which KIPET is based. For 

more details and derivations, the reader is referred to the 

original paper. Beer-Lambert’s absorbance law, when 

considering measurement error, can be expressed as Eq (1): 

𝐷 = 𝐶𝑆𝑇 + 𝐸    (1) 

where 𝐷 is the spectral data matrix (ntp x nwv) with ntp 

being the number of sampling time points and nwv the 

measured wavelengths. 𝐶 is the species concentration 

matrix (ntp x nc), containing system variable noise, where 

nc is the number of absorbing species and 𝑆 is the pure 

component absorbance matrix (nwv x nc). 𝐸 is the ntp x nwv 

measurement error matrix, which we assume to have the 

same normal distribution for all measurements. Assuming 

that the concentration profile without system noise, 𝑧(𝑡), 

can be represented by the following ordinary differential 

equations (ODEs) Eq (2). 

𝑑𝑧(𝑡)

𝑑𝑡
= 𝑓(𝑧(𝑡), 𝑦(𝑡), 𝜃)  

𝑔(𝑧(𝑡), 𝑦(𝑡)) = 0   (2) 



  

where 𝑦(𝑡) are the algebraic variables (e.g. reaction rates) 

and 𝜃 is the kinetic parameter vector. If the measurement 

variance (𝛿2) and system variable (model) variance (𝜎𝑘
2) are 

known, one can solve a nonlinear optimization problem 

combining maximum likelihood principles, Beer-Lambert’s 

law (Eq. 1) and the DAE system in Eq. (2)  to estimate the 

kinetic parameters from spectral data. One can also 

efficiently discretize the problem using orthogonal 

collocation on finite elements to obtain Eq. (3): 

𝑚𝑖𝑛 ∑ ∑(𝑑(𝑡𝑖 , 𝜆𝑙) − ∑ 𝑐𝑘(𝑡𝑖)𝑠𝑘(𝜆𝑙))2

𝑛𝑐

𝑘=1

𝑛𝑝𝑤

𝑙=1

𝑛𝑡𝑝

𝑖=1

/𝛿2

+ ∑ ∑(𝑐𝑘(𝑡𝑖) − 𝑧𝑘(𝑡𝑖))2

𝑛𝑐

𝑘=1

𝑛𝑡𝑝

𝑖=1

 /𝜎𝑘
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𝑠. 𝑡. ∑ 𝑙𝑚̇(𝜏)

𝐾

𝑚=0

𝑧𝑗𝑚 = ℎ𝑗. 𝑓(𝑧𝑗𝑚 , 𝜃),        𝑗 = 1. . 𝑛𝑒, 

 𝑚 = 1. . 𝐾 

𝑧𝐾(𝑡𝑖) = ∑ 𝑙𝑚̇(𝜏)

𝐾

𝑚=0

𝑧𝑗𝑚 ,         𝜏 =
𝑡𝑖 − 𝑡𝑝𝑗−1

𝑡𝑝𝑗 − 𝑡𝑝𝑗−1

 

𝑧𝐾(𝑡𝑖) = 𝑧𝑖−1 + ℎ𝑖 ∑ 𝑙𝑚̇(𝜏).

𝐾

𝑚=1

𝑧̇𝑖𝑚,        𝑧̇𝑖𝑚 = 𝑓(𝑧𝑖𝑚 , 𝑡𝑗,𝑚)  

𝐶 ≥ 0, 𝑆 ≥ 0   (3) 

where 𝑧𝐾(𝑡) is a Lagrange interpolating polynomial and 𝑙𝑚 

is the polynomial basis function. Note that the second term 

in Eq. (3) describes the system variable noise, with variance 

𝜎𝑘
2, minimizing the difference between noised 

concentration profiles, 𝐶, and modeled ones, Z. 

In addition to introducing a framework to directly 

estimate kinetic parameters from spectral data, Chen et al. 

(2016) was the first to propose a numerical procedure to 

estimate measurement and model variances 𝛿2, 𝜎𝑘
2.  

Variance Estimation 

The iterative variance estimation algorithm splits 

problem Eq. (3) into a series of optimization subproblems. 

The initial subproblem, used to obtain the initialization for 

the concentration profiles 𝑐𝑘(𝑡𝑖), assumes that there is no 

system noise, solving Eq. (3) for only the first term in the 

objective function, and ignoring 𝛿2. These are then applied 

to an equivalent probability distribution function Eq. (4), 

derivation in Chen et al. (2016): 

𝑚𝑖𝑛 ∑ 𝑙𝑛 (
1

𝑛𝑡𝑝
∑ ((𝑐𝑘(𝑡𝑖) − 𝑧𝑘(𝑡𝑖))2𝑛𝑡𝑝

𝑖=1 )𝑐
𝑘=1   (4) 

subject to the discretized DAE system. After obtaining 

estimates for 𝑐𝑘(𝑡𝑖) and 𝑧𝑘(𝑡𝑖) from Eq. (4) one can solve a 

second subproblem, Eq. (5), to obtain guesses for the kinetic 

parameters and the 𝑧(𝑡) profiles.  

𝑚𝑖𝑛 ∑ (𝑑𝑖,𝑙 − ∑ (𝑧𝑘(𝑡𝑖)𝑠𝑘(𝜆𝑙))2𝑛𝑐
𝑘=1

𝑛𝑡𝑝
𝑖=1    (5) 

This provides an initialization for 𝑠𝑘(𝜆𝑙). Following 

this another manipulated maximum likelihood formulation, 

Eq. (6) can be solved with 𝑠𝑘(𝜆𝑙) and 𝑐𝑘(𝑡𝑖) fixed: 

𝑚𝑖𝑛 ∑ (𝑑𝑖,𝑙 − ∑ (𝑐𝑘(𝑡𝑖)𝑠𝑘(𝜆𝑙))2𝑛𝑐
𝑘=1

𝑛𝑡𝑝
𝑖=1    (6) 

The sequence of optimization problems repeats until 

convergence for 𝐶, 𝑆, 𝛿, and 𝜎𝑘
2 is achieved. Once 

convergence is achieved ,Eq. (7) provides an estimate of 

measurement variance: 

𝑣2 =
1

𝑛𝑡𝑝
∑ (𝑑𝑖,𝑙 − ∑ (𝑧𝑘(𝑡𝑖)𝑠𝑘(𝜆𝑙))2𝑛𝑐

𝑘=1
𝑛𝑡𝑝
𝑖=1   (7) 

where 𝑣2 is an estimate of the measurement variance. Once 

there is convergence it is possible to estimate 𝜎𝑘
2 and 𝛿2 

from the overdetermined system. This algorithm is 

represented graphically in Figure 1. 

 

Figure 1.   The variance estimation algorithm, 

adapted from Chen et al. (2016) 

In addition to providing estimates for the system and 

measurement variances, the final solution provides very 

good initializations for the remaining system variables. 

Thus, the solution to the variance estimation problem is then 

used to initialize the full simultaneous parameter estimation 

problem, Eq. (3).  

Solution and confidence intervals 

Upon solution of the large-scale NLP problem, KIPET uses 

implicit function theorem and the optimality conditions 

together with the calculation of the reduced Hessian to 

approximate the covariance matrix. KIPET uses either 

sIPOPT (Pirnay et al., 2012) or the newly developed 

sensitivity package, k_aug (Thierry and Biegler, 2018) to 

calculate the reduced Hessian. k_aug uses IPOPT’s output 

to generate and factorize the KKT matrix and is able to be 

used for calculation of both the sensitivities and the reduced 

Hessian, which provides an advantage over sIPOPT for its 

usefulness to estimability analysis. sIPOPT and k_aug can 

be used interchangeably for covariance calculations.  

Further mathematical details about the models and 

convergence proofs are found in in Chen et al. (2016). In 

their study, the rigorous approach described here was shown 

to outperform other toolboxes such as the MCR-ALS 2.0 

for a large number of test problems. It is thus a prime 

candidate for expansion and implementation into an all-in-

one software suite, with enhanced capabilities and 

improvements to usability. The newly developed software 

toolbox, its software implementation, functionality and 

capabilities are described in the following section. 
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Software Framework 

The software implementation of the techniques 

described above is summarized in Figure 2. The software is 

roughly split into simulation (left side of Fig. 2), parameter 

estimation (right side of Fig 2), and estimability analysis. 

Each one of the blocks represented in the figure shows a 

KIPET module, all programmed in Python, with its name in 

brackets. This section will briefly described the contents of 

each module and how these are used to solve kinetic 

parameter estimation problems. 

 

Figure 2.   The module structure / steps 

involved in solving a problem in Kipet 

Data Tools 

The data tools module reads in data from commonly 

used file formats and sorts and inputs the data into pandas 

dataframes, a data structure and analysis Python package, 

which KIPET uses to store and manipulate matrices. This 

module also contains tools used to generate and add noise 

to simulated data, as well as commonly-used spectral pre-

processing techniques including the Savitzky-Golay filter 

(Savitzky and Golay, 1964), Standard Normal Variate 

(Barnes et al., 1989), and Multiplicative Scatter Correction 

(Maleki et al., 2007). 

Model Building 

KIPET uses the open-source optimization modeling 

language Pyomo (Hart et al., 2017) to formulate all 

optimization problems as it provides a flexible optimization 

modeling environment with access to many state-of-the-art 

solvers. The flexibility and object-oriented aspects of 

Pyomo along with the dynamic optimization tools that are 

included in pyomo.dae (Nicholson et al., 2018) form the 

fundamental basis for how KIPET functions. 

On the other hand, KIPET does not require the user to 

interact with Pyomo to utilize its functionality. The 

TemplateBuilder is essentially the Pyomo model 

constructor, taking in the differential and algebraic 

equations and states, parameters and their initializations, 

and the feeding times for dosed systems from the user and 

formulating the optimization problem (Eq. 3) automatically 

in the background. After building the model the user can 

then select and apply the discretization scheme, which 

utilizes pyomo.dae to automatically discretize the dynamic 

system using orthogonal collocation on finite elements. The 

TemplateBuilder thus allows for an easy-to-use intuitive 

model building framework that should be accessible for 

users of all programming skill levels. An example of what 

a model built in this class looks like is presented in the 

tutorial problem section of this paper. 

Simulation 

KIPET provides a number of simulation options. 

Simulation is an essential part of KIPET as it not only 

allows a user to create simulated data and test different 

potential reaction mechanisms, but also gives the user 

robust and reliable ways to initialize the parameter 

estimation problem, which is a crucial and difficult task for 

all large-scale NLP problems.  

The PyomoSimulator solves the fully discretized 

differential-algebraic equations (DAE) problem 

simultaneously, with the parameters fixed. After solving 

this problem, the PyomoSimulator automatically patches 

the locally optimal values for C and S back into the full 

model. Another option for simulation is to use the 

FESimulator, which utilizes fe_factory as its basis, allowing 

for a finite element-by-element march-forward solution 

strategy. In this approach, KIPET uses pyomo.dae to solve 

each individual finite element’s collocation equations as a 

separate problem with IPOPT (Wächter and Biegler, 2006), 

using the fact that when Radau collocation points are 

utilized we also have the solution for the initial point of the 

next element. FESimulator thus provides KIPET with a 

form of implicit Runge-Kutta integration. This technique is 

extremely useful for solving large problems that are 

difficult to solve simultaneously and also has the advantage 

that it can be adapted for systems in which we have inputs 

(dosing) as the sizes of the finite elements can be easily 

manipulated.  

Typically, for large problems, a simulation in KIPET is 

run first with fixed parameters and the results are used to 

initialize the full variance estimation and parameter 

estimation problems. This procedure is common practice 

when solving dynamic optimization problems as simulation 

provides initial feasible solution to the optimization 

problem. This initialization is done automatically within 

KIPET. 
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Variance Estimation 

The VarianceEstimator class performs the iterative 

variance estimation algorithm detailed in the previous 

section. This algorithm is the slowest part of the KIPET 

package as it requires a sequence of optimization problems 

to be solved until the convergence criteria is reached. In 

addition to obtaining the 𝛿2  and 𝜎𝑘
2, the VarianceEstimator 

also obtains values for kinetic parameters and concentration 

profiles that can be used as improved initializations to the 

parameter estimation problem. 

Parameter Estimation 

Finally, in order to obtain the kinetic parameter 

estimates, the ParameterEstimator is used. This module 

solves the full simultaneous optimization problem, based on 

the initializations given and with the variances obtained 

from the previous step. The S, C, Z, 𝜃, and any algebraic 

state variables are all left as variables in this case. Through 

using IPOPT to solve the NLP we can also calculate the 

covariance matrix using k_aug or sIPOPT.  KIPET also 

provides the option to solve kinetic parameter estimation 

problems where concentration data is known by removing 

the first term of the objective function in Eq (3) and solving 

a minimization of the least squares problem.  

Estimability Analysis 

Another of KIPET’s capabilities is to provide the user 

with a measure of parameter estimability through the 

EstimabilityAnalyzer module. This module contains tools 

to rank parameters in terms of estimability and then solves 

a sequence of simplified models using the 

ParameterEstimator. The estimability assessments are 

actively being expanded to include estimability based on 

spectra, however, the latest version of KIPET contains the 

ability to perform detailed estimability analysis for 

concentration data problems only. The parameter-ranking 

scheme of Yao et al. (2003) is used to perform the parameter 

ranking based on the sensitivities obtained through k_aug. 

After the parameter rankings are obtained, a modified 

version of the techniques proposed by Wu et al. (2011) is 

used to obtain the number of parameters that should be 

estimated. This is done through solving a sequence of 

parameter estimation problems, using ParameterEstimator, 

where the most estimable parameters are left as variables 

and the least estimable are fixed. These simplified models 

are then compared to the full problem through mean squared 

errors. The EstimabilityAnalyzer returns which parameters 

should be fixed and which should be left as variables in the 

model. 

With these core modules, KIPET provides a large 

number of useful capabilities to a research chemist. KIPET 

has many other useful features, such as providing the option 

of solving problems where there are known non-absorbing 

components (reacting or not-reacting), and the option to 

include complementary measurement data, such as 

temperature and volume measurements. The ability to 

easily include dosing into the parameter and variance 

estimation by exploiting the discretization structure and 

new tools developed in the package is another major 

advantage of KIPET.  

Using the detailed and adaptable discretization 

strategies discussed, in combination with the advantages of 

an object-oriented programming language like Python, we 

are able to exploit these benefits to provide an adaptable and 

reliable tool which, when a fast and powerful nonlinear 

optimization solver such as IPOPT is utilized, provides fast 

solutions to an array of kinetic parameter estimation 

problems. 

A full list of KIPET’s capabilities, how they work, the 

installation instructions, and a large number of instructional 

tutorial problems and additional examples are provided in 

KIPET’s documentation. The documentation aims to help 

beginner users with little programming and optimization 

experience to utilize all of KIPET’s powerful capabilities. 

Example Problem 

A simple illustrative example problem of a dosed 

system is presented here. The reaction system is shown in 

Eq. (8). 

𝑑𝑐𝐴

𝑑𝑡
=  −𝑘1𝑐𝐴 + 𝑑(𝑡),       𝑐𝐴(0) = 0.01    

𝑑𝑐𝐵

𝑑𝑡
=  𝑘1𝑐𝐴 − 𝑘2𝑐𝐵 ,       𝑐𝐵(0) = 0 

𝑑𝑐𝐶

𝑑𝑡
=  𝑘2𝑐𝐵  ,       𝑐𝐶(0) = 0   

0 ≤  𝑘1 ≤ 5 ,     0 ≤  𝑘2 ≤ 5  

𝑑(𝑡) =  {
0.001,     𝑖𝑓 𝑡 = 3.6341

0                    𝑒𝑙𝑠𝑒
   (8) 

The spectral data matrix for this problem is a 300 x 100 

matrix. After running the VarianceEstimator, we obtain 

variance estimates for species A, B, and C of 4.928 x 10-8, 

8.817 x 10-8, and 9,366 x 10-8 respectively and measurement 

error of 3.346 x 10-6. The ParameterEstimator is then run 

and the results obtained are shown in Table 1 and Figures 3 

and 4.  The entire process of simulation for initialization 

using FESimulator, followed by variance estimation and 

parameter estimation took 135.62 CPUs. 

Table 1. Results of kinetic parameter 

estimation for example problem 

Parameter Initial Estimated Confidence Interval 

k1 0.9 0.2951 (0.2764, 0.3137) 
k2 0.2 1.4667 (1.3490, 1.5844) 

This example illustrates the speed and efficiency of the 

proposed approach, as well as how easily dosed systems can 

be handled. After the model setup, only a few lines of code 

are needed to run the problem. The confidence intervals are 

computed using k_aug in this example. This example is one 

of many that are available on the software download page 

along with documentation. 



  

 

 

Figure 3.   Individual species’ absorbance 

profiles 

 

Figure 4.   Concentration profiles 

Conclusions and Future Work 

A new Python-based open-source software package, 

KIPET, has been presented in this paper. The software aims 

to provide an array of tools to chemists that allow for the 

efficient estimation of kinetic parameters from 

experimental data. The software is capable of reading 

spectral data or concentration data directly from commonly-

used instruments, provides data pre-processing tools, 

estimability analysis tools, built-in variance estimation, and 

kinetic parameter estimation with confidence intervals 

obtained from the problem sensitivities. The software is 

capable of solving a wide variety of problems, including 

problems with different dosing schemes, all based on the 

unified simultaneous optimization-based framework 

presented by Chen et al. (2016), utilizing maximum 

likelihood principles and collocation methods. 

The software uses the Pyomo optimization package to 

formulate the optimization problem and perform the model 

discretization, along with fe_factory, a newly developed 

class that performs a march-forward finite element-by-

element approach. IPOPT is used to solve the resulting 

large-scale NLPs and sIPOPT and k_aug can be utilized to 

obtain the covariance matrices through optimal solution 

sensitivity calculations. 

The paper briefly describes the ways in which KIPET 

can be used to solve large parameter estimation problems 

                                                           

1 https://github.com/salvadorgarciamunoz/kipet 

through a variety of strategies and briefly demonstrates 

example code in order to demonstrate KIPET’s ease-of-use. 

KIPET can provide fast solutions to a variety of 

problems, however the drawbacks include the amount of 

time involved in the iterative variance estimation algorithm, 

reliance on a good kinetic model provided by the user, as 

well as good initializations. KIPET provides the user with a 

large array of initialization options. However, the user can 

potentially spend a lot of time selecting the most suitable 

initialization approach. 

KIPET, and all third-party software it uses (apart from 

HSL libraries which are free for academic use), is released 

under the GNU general public license 3.0 and is freely 

available on Github1. Kipet also has an extensive user 

manual with installation instructions and an array of tutorial 

problems to make it accessible to new users. 

KIPET currently includes all of the features discussed 

above and is currently under active development with a slew 

of new features to be added. Methods to obtain parameter 

estimation with unknown absorbing species (based on 

Chen, et al, 2018), enhanced estimability methods for 

problems with spectra, and the application of the package to 

enhance experimental design are planned.   
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