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Abstract: We study energy-optimal control of the cooling process during wine fermentation.
The process of wine fermentation is described by a novel model (Borz̀ı et al. (2014)) including a
death phase for yeast and the influence of oxygen on the process. The parameters determining
the fermentation dynamics are estimated from measurements and the optimal cooling profile is
computed. The numerical results regarding the development of the substrates and the product
as well as the control profiles for a common fermentation temperature profile and the optimal
temperature profile are compared. It turns out that significant improvement can be achieved by
using the optimal calculated temperature profile.
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1. INTRODUCTION

The main objective of industrial enterprises consists in
increasing their profit. This means that the profit of any
product should be increased. One way to the solution of
this profit-driven objective is to reduce production costs
but maintain or improve the quality of this product at
the same time. Therefore, the application of mathematical
simulation and optimization methods establishes more and
more in industry. In the context of wine fermentation, this
is the main objective of the project RŒNOBIO.
There is a high savings potential for energy consump-
tion in the process of making wine. In 2009 the energy
requirements caused 0.08% of the global greenhouse gas
emissions or in other words about 2 kg/0.75l bottle (Smyth
et al. (2011)). Exemplary in California the annual energy
consumption in wine industry is located at 400 GWh, the
second highest in food industry (Galitzky et al. (2005)).
Thereby the control of the fermentation temperature has
a high impact. (Freund (2009); Bystricky (2009); Freund
et al. (2008)). That is why it is of significant importance
to minimize the energy needed for cooling during wine
fermentation.
In Borz̀ı et al. (2014), a novel model for wine fermen-
tation including the yeast dying phase has already been
presented. This model reflects the behavior of yeast cells
that is observed in reality apart from the lag phase taking
place at the beginning of fermentation. The yeast growth
phases are illustrated in Dittrich and Gromann (2011).
Furthermore, it takes oxygen into account which is an
important factor for yeast activity.
In addition to this, for solving an energy-optimal control
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problem controlling the fermentation temperature, the
temperature development has to be included in the model.
The conversion of sugar into alcohol is an exothermic
reaction which means that heat is produced. This heat
has to be dissipated as temperature plays a crucial role for
yeast. If the fermentation temperature is too high, yeast
cells die. However, in the phase where oxygen is present,
even more heat is produced.
In this paper, the parameters included in this new model
describing the wine fermentation process are identified
from measurements. Then, by making use of these esti-
mates an optimal control problem (OCP) for minimizing
the cooling energy, needed during the fermentation process
by controlling the fermentation temperature, is studied.
In section 2, the model representing the wine fermentation
process is introduced, and then the considered optimal
control problem is mentioned in section 3. Subsequently,
the methods for estimating the involved parameters and
for the solution of the introduced energy-optimal control
problem are presented in Section 4. Afterwards, results
regarding the parameter estimation using multiple experi-
ments and a comparison of results for a common tempera-
ture profile and an optimal temperature profile in Section
5. Conclusions are presented in Section 6.

2. PROCESS MODEL DESCRIPTION

First, we recall the model introduced in Borz̀ı et al. (2014).
It describes the wine fermentation process as it can be
observed in real experiments.
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(1)
In this model, the growth of yeast concentration is de-
pendent on the consumption of the nitrogen, sugar and
oxygen concentration. Sugar is converted into alcohol but
inhibited by it as well.
Here, the sugar concentration is split up into two parts,
the amount of sugar which is converted into ethanol and
the amount of sugar needed as a nutrient for the yeast.
Besides this, the presence of oxygen is considered in this
model because it plays a crucial role for yeast activity,
especially in the case of using a Saccharomyces cerivisae
yeast strain.
The death of cells, included in the differential equation for
yeast, is modeled by the following nonlinear term

Φ(E) =

(
0.5 +

1

π
arctan(kd1(E − tol))

)
kd2(E − tol)2,

(2)
where tol represents the tolerated ethanol concentration.
Besides this, kd1 and kd2 are parameters associated to the
death of yeast cells due to ethanol exceeding the tolerance
tol. This death term assures that the lag and death phase
of yeast cells take place. The development of yeast cells
in these phases depends on the concentration of ethanol.
Alcohol inhibits the yeast such that if its concentration
is below a tolerance tol the number of yeast cells stays
stationary, and if it is greater than tol, the yeast cells die.
X represents the yeast concentration, N the nitrogen
concentration, E the ethanol concentration, S the sugar
concentration, O2 the oxygen concentration and T the
time-dependent temperature.
This model makes use of Michaëlis-Menten kinetics. Here,
the specific growth rates µmax(T ) and βmax(T ) are de-
pendent on temperature T . Furthermore, KN and KO are
the Michaëlis-Menten half-saturation constant associated
to Nitrogen and Oxygen. Besides this, KE(T ) shows the
ethanol inhibition dependent on temperature. The param-
eters k1 and k4 are the yield coefficients associated to
nitrogen and oxygen respectively.
In this model, two saturation constants associated to
sugar, namely KS1 and KS2 , are needed. Thereby KS1

represents the saturation constant associated to the part
of sugar used as a nutrient for the yeast and KS2 is the
saturation constant associated to the part of sugar needed
for the metabolization into alcohol. Moreover, also two
yield coefficients associated to sugar are needed. On the
one hand, there is k2 which represents the yield coefficient
associated to the part of sugar that is converted into

alcohol and on the other hand, there is k3 which stands
for the yield coefficient related to the part of sugar which
is used as a nutrient for the yeast.

3. OPTIMAL CONTROL PROBLEM

In industry, the main goal is to increase the profit of a
product. This means that the focus mostly lies on reducing
the production costs with simultaneous maintenance of
the quality of the product. This is what we take as our
objective in the formulated OCP, namely the goal is to
reduce the energy needed for cooling by controlling the
fermentation temperature.
This means that temperature is the degree of freedom in
the considered OCP.
Thereby a certain final ethanol concentration is aspired
which is expressed by a boundary condition (equation
(17)).

min J(u) :=

∫ tf

0

|Text − u(t)|dt

s.t.
Model (1)

∂T

∂t
=α1

∂E

∂t
− α2

∂O2

∂t
− α3(T − u)

(3)

with adequate initial values, box constraints and as al-
ready mentioned a boundary condition regarding the final
ethanol concentration.
Furthermore, the development of temperature has to be
observed. Thereby it is assumed that with the accumula-
tion of ethanol, the temperature inside the fermentation
tank rises and with the presence of oxygen even with a
higher impact. These components are represented by the
differential equation for temperature. So, α1 represents
how much heat is produced by the conversion of sugar into
alcohol. Moreover, α2 expresses the measure of how the
presence of oxygen intensifies this accumulation of heat.
α3 can be interpreted as a diffusion coefficient which is
the smaller the greater the wine tank in relation to the
cooling element is. Thereby T is the current temperature
in the fermentation tank and u the temperature of the
cooling fluid flowing through the cooling element which is
the control in this OCP.
The objective J(u) consists in minimizing the energy
needed for cooling during fermentation. This means that
the absolute difference between the exterior temperature
(the temperature outside of the tank) and the temperature
control integrated over time is calculated.

4. COMPUTATIONAL METHODS

In this section the techniques for estimating the param-
eters and solving the OCP presented in section 3 are
explained.
A parameter estimation problem is a subclass of an opti-
mal control problem and there are several different ways
of solving OCPs as described in Binder et al. (2001).
In our case, a direct multiple shooting approach (Plitt
(1981); Bock and Plitt (1984); Bock (1987)) was chosen
for the discretization of the parameter estimation problem
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(4) and of the optimal control problem (3), a backward
differentiation formula method (BDF method, as in Hairer
(2010)) for the numerical integration of the system of
ordinary differential equations and a sequential quadratic
programming method (SQP method, as in Nocedal and
Wright (2006)) for the solution of the resulting constrained
nonlinear optimization problem.
These methods were implemented using the ACADO
toolkit - a toolkit for Automatic Control and Dynamic
Optimization developed by Moritz Diehl et al. (Ariens
et al. (2010–2011); Houska et al. (2009–2013)).
The application of these methods to our problems is de-
scribed in detail in the following two subsections.

4.1 Parameter Identification

The process model (1) contains many parameters. These
parameters have to be identified.
The parameter estimation problem that has to be solved
looks like the following.

min
y,p

r1(y(t0), ..., y(tN ), p)

= min
y,p

N∑
i=0

(ηi − g(ti, y(ti), p))
2

σ2
i

s.t.{
ẏ(t) = f(t, y, p), t ∈ [t0, tN ]

r
¯
≤ r2(y(t0), . . . , y(tN ), p) ≤ r̄

(4)

with a least-squares objective functional minimizing the
sum of squares of the weighted residuals represented by
the estimating function r1. The measured data is repre-
sented by ηi where these are measurements for the sugar
concentration at time sample points t0 . . . tN . σ2

i are the
variances of the measurements. Here, they are assumed
to be the mean values of the measurements. Moreover,
g(ti, y(ti), p) represents the corresponding model output.
The system of differential equations ẏ(t) = f(t, y, p)
refers to system (1) with the differential states y =
(X,N,E, S,O2)T and parameters p, displayed in Table 2.
Furthermore, additional equality and box constraints for
the differential states and parameters in this formulation
are represented by the function r2.
In detail the process for solving this problem looks like the
following.

a) Discretize the boundary value problem by multiple
shooting method (see Bock (1987) for further informa-
tion):
For i = 0, . . . N − 1 do

(i) Discretize state piecewise

y(t) := si for t ∈ [ti, ti+1] (5)

(ii) Solve system of ODEs on each interval [ti, ti+1]
numerically (BDF-method) with an initial value
si
ẏi(t; si, p) = f(yi(t; si, p), p), t ∈ [ti, ti+1]

yi(ti, si, p) = si,
(6)

end

b) Solve constrained nonlinear least squares problem (7)
by SQP method using a stucture-exploiting Broyden-

Fletcher-Goldfarb-Shanno (BFGS) update for the ap-
proximation of the Hessian.

min
s,p

N∑
i=0

(ηi − g(ti, y(ti; si, p), p))
2

σ2
i

s.t. s0 − y0 = 0

si+1 − yi(ti+1, si, p) = 0, i = 0, . . . N − 1

r
¯
≤ r2(si, p) ≤ r̄, i = 0, . . . , N

(7)

In order to evaluate the quality of our estimate, the
variance-covariance matrices have to be calculated. There-
for a linear approximation in the optimal solution is de-
rived. Further information on this procedure can be found
in Bock (1987).

4.2 Optimal Control

After the derivation of the optimal control problem and
the estimation of most of the parameters involved, this
section focuses on the solution of this problem.
The procedure for solving OCP (3) works basically like
solving the parameter estimation problem (4) in the last
subsection. The system of differential equations ẏ(t) =
f(t, y, u) corresponds to the system in (3) with the differ-
ential states y = (X,N,E, S,O2, T )T and control u. Note
that y here differs from y in section 4.1 by the temperature
variable T .
In detail the solution process looks like the following.

a) Discretize the boundary value problem by multiple
shooting method (see Bock (1987) for further informa-
tion):
For i = 0, . . . N − 1 do

(i) Discretize control piecewise constant

u(t) := qi for t ∈ [ti, ti+1] (8)

(ii) Solve system of ODEs on each interval [ti, ti+1]
numerically (BDF-method) with an initial value
si
ẏi(t; si, qi) = f(yi(t; si, qi), qi), t ∈ [ti, ti+1]

yi(ti, si, qi) = si,
(9)

(iii) Numerically compute integrals (objective func-
tional in Lagrange form)

li(si, qi) :=

∫ ti+1

ti

L(yi(ti, si, qi), qi)dt (10)

end

b) Solve nonlinear constrained optimization problem (11)
by SQP method using a stucture-exploiting BFGS
update for the approximation of the Hessian.

min
s,q

N−1∑
i=0

li(si, qi)

s.t. s0 − y0 = 0

si+1 − yi(ti+1, si, qi) = 0, i = 0, . . . N − 1

c
¯
≤ c(si, qi) ≤ c̄, i = 0, . . . , N

E
¯
≤ r(sN ) ≤ Ē

(11)
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Thereby, c is the function of box constraints for the
differential states and the control and r corresponds to
the boundary condition, in form of a box constraint,
regarding the final ethanol concentration.

5. NUMERICAL RESULTS

In this section numerical results applying the methods
introduced in the latter section to our process model
are presented. All the results shown in this section were
obtained by using the ACADO toolkit - a toolkit for
Automatic Control and Dynamic Optimization developed
by Moritz Diehl et al. (Ariens et al. (2010–2011); Houska
et al. (2009–2013)).

5.1 Parameter Identification

At first, results concerning the estimation of the involved
parameters are visualized.
One of our industry partners, DLR Mosel, provided us
with measurements of Oechsle values. To render them
useful for our model (1) we assumed that 1◦Oechsle
corresponds to a sugar concentration of 2.2 g/l. As one
set of these measurements was not sufficient for estimating
the parameters, we moved on to run multiple experiments.
For the differential states the initial values illustrated in
Table (1) were chosen.
In addition to this, we set box constraints for most of the

X(0) 0.2 g/l (≈ 400000/ml)
N(0) 0.17 g/l
E(0) 0 g/l
O2(0) 0.005 g/l

Table 1. Initial values for differential states for
parameter estimation problem

differential states based on experience, i.e.

0 g/l ≤N ≤ 0.17 g/l,

0 g/l ≤E ≤ 100 g/l,

0 g/l ≤S ≤ 213.4 g/l,

and

0 g/l ≤O2 ≤ 0.005 g/l.

(12)

The maximum specific growth rates µmax(T ) and βmax(T )
and the inhibition rate KE(T ) were assumed to be linear
dependent on temperature such that

µmax(T ) = µ1T − µ2,

βmax(T ) = β1T − β2

and

KE(T ) = −KE1T +KE2

(13)

where for the temperature T a linear temperature profile
was chosen. This means T equals 15◦C for the first half
of the fermentation, 18◦C for the second half of the
fermentation and it exists a linear ascent in between.
The upper and lower bounds of the parameters p were
selected dependent on the initial guesses pinit, i.e.

(1− lb)pinit ≤ p ≤ (1 + ub)pinit (14)

where lb was chosen to be equal to 1 and ub was chosen to
be equal to 7.
For the case of using two sets of measured data, the results

for fitting the model are visualized in Figure 1 and Table 2.
It is visible that for these two similar courses of sugar

Parameters initial estimated

µ1 0.0210 0.1681
µ2 0.1858 0.0
KN 0.0925 0.1096
k1 0.7 0.0720
KS1

33.35 29.5
KS2

4.3 7.081
KE1

0.2616 0.0
KE2

38.90 85.73
β1 0.0337 0.2696
β2 0.2855 0.0
kd1 100 99.86
kd2 0.003 0.0021
k3 1.5 12.0
KO 0.001 25 0.0038
k4 1.05 0.0019

Table 2. Parameter estimates

measurements a good fit was obtained.
However, the question is whether it is also a good estimate.
That is why we examine the degree of uncertainty of the
parameter estimation. So, we take a look at the standard
deviations of the parameters or respectively the square
roots of the diagonal elements of the variance covariance
matrix.

µ1 = 0.1681 ± 0.0 0%

µ2 = 0.0 ± 0.0 0%

KN = 0.1096 ± 0.01651 15.1%

k1 = 0.07199 ± 0.01162 16.1%

KS1 = 29.5 ± 0.4038 1.4%

KS2
= 7.081 ± 12.07 170.5%

KE1 = 0.0 ± 0.0 0%

KE2
= 85.73 ± 3.337 3.9%

β1 = 0.2696 ± 0.0 0%

β2 = 0.0 ± 0.0 0%

kd1 = 99.86 ± 0.1578 0.2%

kd2
= 0.002059 ± 0.005696 276.6%

k3 = 12.00 ± 0.0 0%

k4 = 0.001868 ± 0.0001837 9.8%

KO = 0.003759 ± 0.001477 39.2%

(15)

These confidence intervals of the parameters show that
some of them are large or even very large. This means
that these parameters are poorly determined. Neverthe-
less, there are other parameters like for example µ1 which
are determined really well.

5.2 Optimal Control

In the following, numerical results regarding the solution of
the given OCP are compared to the trajectories associated
with a temperature profile as it is common to use in wine
industry.
An optimal solution to the OCP (3) was generated. For
the parameters involved, the values displayed in Table 2
and Table 3 were used. Most of the parameters come from
the parameter estimation whose results were presented
in the latter subsection. However, k4 and KO were set
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Parameters set

KO 0.0007
k4 0.0025
k2 2.1544
Text 15.0
KO2 0.0004
tol 70.0

α1
22.3

85
α2 1.0
α3 0.15

Table 3. Additional parameter values for the
corresponding model

X(0) 0.2 g/l (≈ 400000/ml)
N(0) 0.17 g/l
E(0) 0 g/l
S(0) 213.4 g/l
O2(0) 0.005 g/l
T (0) 15.0 ◦C

Table 4. Initial values for differential states for
optimal control problem

to different values as they were estimated because the
concentration of oxygen has to totally disappear faster
than what came out by using their estimates. The other
parameters were set to certain values like for example the
heat coefficient α1 which is dependent on the accumulation
of alcohol. It was calculated based on how much heat is
produced by the fermentation of a must which contains
213.4 g/l of sugar. According to Dittrich and Gromann
(2011), the fermentation of one mol hexose (≈ 180 g)
computes approximately 23.5 kcal/l of heat. This means
that if the fermentation process starts with a must of 15◦C
it can heat up to 37.3◦C as around 20% is dissipated
with the disappearance of the fermentation gas. This
leads to 22.3◦C relative to the minimum achieved alcohol
concentration at the end of the fermentation process for
α1. The rest of the parameters was set to certain values
based on experience.
For the differential states the initial values illustrated in
Table 4 were chosen.

Furthermore, we set box constraints for most of the
differential states based on experience, like in (12). The
maximum specific growth rates µmax(T ) and βmax(T )
and the inhibition rate KE(T ) were assumed to be linear
dependent on temperature like in (13). For temperature
T and control u we considered box constraints of the
following form

15◦C ≤T ≤ 20◦C

0◦C ≤u ≤ 25◦C
(16)

in accordance with the knowledge of how much heat is
produced which was mentioned above.
Moreover, the alcohol concentration at the end of fermen-
tation is supposed to be located between 85 and 90 g/l,
i.e.

85 g/l ≤ E(tf ) ≤ 90 g/l. (17)

Under these circumstances, using the methods described
in the latter section, the algorithm converges after 854
iterations, with a KKT-tolerance of 4.995 × 10−5 and 36
time intervals chosen for the discretization, and the results
represented in Figure 2 are obtained, where a standard

(blue) and optimized (red) temperature profile are com-
pared.
The trajectories of the product and the substrates for the
two different temperature profiles look very similar but for
the optimal profile the sugar is consumed faster. Therefore
the aspired ethanol concentration is reached sooner and
the yeast cells start dying sooner.
In the main phase of fermentation the temperature rises
to its upper bound and decreases when the aspired final
ethanol concentration is reached. For the corresponding
control, we can say that at the beginning where oxygen
is still present but not much alcohol yet, the cooling
temperature does not need to be low yet. With the absence
of oxygen, the temperature of the fluid that flows through
the cooling element becomes cooler. Compared to this, the
control associated with the common temperature profile
rises almost linear.
The objective function value for the optimal control profile
equals 55.69 compared to 124.62 for the usual control. This
means that by using the new optimal profile the cooling
costs can be reduced by approximately 55%.

6. CONCLUSION

In this work, parameter estimation for a model describing
the wine fermentation process including the yeast dying
phase was conducted. Moreover, the parameter estimates
were evaluated regarding their quality. By making use
of these identified parameters an energy-optimal control
problem controlling the fermentation temperature was
solved. The we compared the trajectories for the resulting
optimal control profile to the use of a standard profile, as
it is common to use in the industry of making wine. All
in all, the energy consumption using the optimal control
profile for controlling the temperature of the fermentation
process could be reduced by 55%.
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trum Ländlicher Raum (DLR) Mosel, Bernkastel-Kues) for
providing us with measurement data.

REFERENCES

Ariens, D., Houska, B., and Ferreau, H. (2010–
2011). ACADO for Matlab User’s Manual.
http://www.acadotoolkit.org.

Binder, T., Blank, L., Bock, H., Bulirsch, R., Dahmen, W.,
Diehl, M., Kronseder, T., Marquardt, W., Schlöder, J.,
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Fig. 1. Fit (red) for two similar sets of sugar concentration measurements (blue)
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Fig. 2. Comparison of standard (blue) and optimized (red) temperature profile
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